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Abstract. The Thomas equation has the Lie-Backlund algebra recurrence operator of the 
first order, the infinite set of the many-parameter Backlund autotransformations and no 
reduction to the Painlevt transcendents. The Burgers equation has the same properties 
which are probably the general indicators of the hidden linearity. 

In 1944 Thomas proposed [ l ]  the non-linear equation 

( L Y  and p are arbitrary constants) describing a certain chemical reaction and found 
the linearising transformation 

cp = -px - cut + In w (2) 

that transforms (1) into the well-studied linear hyperbolic equation 

w,, = f fpw.  (3) 

Equation (1) was described in [2] as the Thomas equation (TE) together with its 
linearising transformation (2). Recently, the TE was investigated intensively in the 
series of works [3-51. There, for some reason the TE was called the Thompson equation, 
the linearisation (2), (3) was not mentioned at all, and the TE was investigated as an 
essentially non-linear equation by means of all the arsenal of powerful modern ‘non- 
linear’ methods such as the higher symmetries and the Lax pair [3], the reduction to 
ODE and the PainlevC property [4], the prolongation algebra and the Backlund transfor- 
mation [5]. So on the one hand the TE has the hidden linearity, i.e. it can be linearised 
exactly, and on the other hand it is a well studied completely integrable equation. 
That is why the TE is very useful for answering the following rather general question: 
what are the properties of a certain non-linear equation that indicate the possibility 
of linearising that equation exactly? Taking the results of [3-51 as a basis (after some 
corrections and additions) we find three possible indicators of the hidden linearity. 
They are not some special properties of the TE only. To demonstrate it, we consider 
the well known Burgers equation ( B E )  [6] 

U, = U,, - UU, 

which is linearised into 

(4) 

Ut = vxx (5) 
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via the Cole-Hopf transformation [7 ,8 ]  

U = - 2 v , / v .  ( 6 )  
In [3] the higher symmetries of the TE were investigated. Unfortunately, the 

Lie-Backlund algebra [9] basis of the TE was wrongly calculated there, the whole of 
its t part and all the even-order elements of its x part having been left out. As a result 
of the mistake, the recurrence operator of the TE Lie-Backlund algebra ( L B A )  was 
found to be of second order which does not distinguish the TE from such equations 
as the sine-Gordon equation ( S G )  and the Korteweg-de Vries equation (Kdv) .  Calculat- 
ing the basis of the TE LBA correctly, we find it to be 1, q,, qxx+ q: ,  ~ , , , + 3 ~ , ~ , , +  
q,, . . . , q,, q,, + q:, q,,, + 3cp,q,, + cp: , . . . . The basis evidently has two first-order recur- 
rence operators L = a, + q,, M = d, + q,, and the whole of it can be constructed from 
any of its elements via these operators. The first order of the recurrence operators 
distinctly distinguishes the TE from other non-linear completely integrable PDE, whose 
exact linearisations are unknown as yet or probably do not exist at all, the LBA of the 
K d v  and the SG have second-order recurrence operators, the LBA of the Sawada-Kotera 
equation has sixth order [9], etc. This property of the TE is not a chance phenomenon 
and can be easily explained in terms of its hidden linearity. Indeed, the LBA of the 
linear equation (3) has the basis w, w,, w,, w,,, . . . , U , ,  w, , ,  w,, , ,  . . .with first-order 
recurrence operators 8, and d,, while the equivalence transformation (2) does not 
change the order of the recurrence operators. The same is true for the B E  (4). The 
basis of its LBA U,, U,, - uu,, U,,, -zuu,, -TU, +:u2u,, . . . has the recurrence operator 

the recurrence operator a, of the linear equation ( 5 )  [9]. Since any linear constant- 
coefficients equation has a recurrence operator of first order, the wisest course would 
be to assume that any non-linear exactly linearisable PDE has a recurrence operator 
of first order too. 

The exact reductions of the TE (1) to ODE were investigated in [4]. The ODE have 
turned out to be some reducible PainlevC equations. It should be noticed that the 
exact reductions of the TE do not generate the Painlev6 transcendents, while the Kdv, 

the SG, the Boussinesq equation and some other completely integrable PDE [ 101 (whose 
exact linearisations are unknown as yet or probably do not exist at all) do generate 
them. The PainlevC transcendents [ l l ]  are known to be irreducible equations; they 
cannot be reduced to some first-order equations or solved in terms of elliptic functions 
or transformed into some linear ODE (maybe of a higher order). To a certain extent, 
the PainlevC transcendents inherit essentially non-linear structures of those non-linear 
PDE which generate them via exact reductions. On the contrary, if an ODE is generated 
by an exactly linearisable PDE, it must inherit the hidden linear structure of the PDE. 

Indeed, both the TE [4] and the B E  [ 101 give PainlevC equations reducible to the Riccati 
equation, and the latter transforms into the linear Schrodinger equation. Therefore, 
if some non-linear PDE has the PainlevC property [ 101 but does not generate PainlevC 
transcendents, it probably can be linearised exactly. 

In [5] the prolongation structure of the TE was investigated, and the Backlund 
autotransformation (BAT), the one-soliton solution and the soliton superposition law 
were found. Nevertheless, the form of the prolongation algebra, the 2 x 2  linear 
problem, BAT, soliton and non-linear superposition law do not indicate that the equation 
under consideration can be easily linearised. The corresponding results for, e.g., the 
SG have a similar form. In order to detect one more indicator of the hidden linearity, 
let us use the following particular property of any linear constant-coefficients equation, 

3 

3 3 2  

N=d , - lu- lu  ,a;' [9] of first order too. This is also attributed to the first order of 
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namely that a derivative of any solution of the equation is again a solution of the 
equation. We can construct infinitely many BAT of the linear equation (3) ( [ k  are 
arbitrary constants, n is an arbitrary integer): 

and transform them via (2) into 

Now we get the infinite sequence of the many-parameter BAT of the TE: 

cpt=cp+ln50 

cp‘ = cp + ln[(50 + P5, ) + 51cpx 1 
cp‘ = cp + W(50 + P51 + P’52 1 + (51 + 2P52) cpx + 52( cpxx + cp: >I 

etc. The same is true for the BE (4). Taking BAT of (5) in the form 

we get from (6) 

For any n, U can be excluded from (10) via (6) and its prolongations (U, = ( -4u)u,  U,, = 
( - ~ u , + ~ u ’ ) u , .  . . ), and we have the infinite sequence of the many-parameter BAT of 
the BE: 

U t =  -2U,/(U + K ) +  U 

U’ = -2[ln( U, -4u2+ Au + p)], + u 

(11) 

(12) 

where K = -250/51 (this BAT of the BE was mentioned in [lo]) and 

where A = el/[’, p = -2 tO/ t2 ,  and so on; for every n there exists the n-parameter BAT 
of the BE. The existence of the infinite sets of the BAT for the TE and the BE is based 
on their hidden linearities and distinguishes them from other non-linear completely 
integrable equations, of which neither exact linearisations nor infinite sets of BAT are 
known as yet. 

It should be noted that the TE and the BE are linearised via essentially different 
transformations. The transformation (2) is a point transformation involving only the 
dependent and independent variables, while the Cole-Hopf transformation (6) involves 
the derivative and (like the well known Miura transformation) must be classified as a 
Lie-Backlund transformation [9]. Despite this difference, the TE and the BE have three 
properties in common based on their hidden linearities. At the same time, other 
completely integrable equations, whose exact linearisations are unknown as yet or 
probably do not exist at all, do not have these properties. The foregoing arguments 
make it possible to formulate the following conjecture: a non-linear PDE has a hidden 
linearity, i.e. it can be transformed into some linear constant-coefficients equation, if 
(i) its LBA has a recurrence operator of the first order, (ii) the PDE has the Painlevi 
property [lo] but no exact reduction to the PainlevC transcendents, and (iii) the PDE 

has an infinite set of many-parameter BAT. 
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